• Image Analysis
  • Microfluidics
  • Single Cell / Single Molecule
  • Technologies for in vivo biology on animal models

Integrated single-cell level system for investigating mutations and evolution

Project lead by  Lydia Robert,  Marina Elez


Mutations have been investigated for more than a century but never observed directly in single cells, which hampered the characterization of their dynamics and fitness effects. We accomplished this recently in Escherichia coli by developing a new methodology (L. Robert et al. Science).

Our approach for studying mutations is at the single-cell level, in real-time and with high-throughput. It combines microfluidics, time-lapse imaging, automated image analysis, and a fluorescent tag of the mismatch repair system.

We propose here to extend our approach and develop new tools to control quantitatively the mutation dynamics and the selection force acting on the cells during mutation accumulation. We will also develop a dedicated and automated image analysis software.

Thus, we will build an integrated single-cell level system for investigating mutations and evolution through a fine-tuning of the key factors guiding evolutionary changes.



As a response to the : Call for projects 2018 : Innovative technologies

Development and Dissemination of Innovative Technologies to be Used in Research in Life Sciences

Details & Selected Projects


  • Micalis Institute

    Paris Saclay University

    Read more
  • Micro-organisms biophysics

    CNRS - French National Centre for Scientific Research
    Laboratoire Jean Perrin (LJP)
    Sorbonne University

    Read more